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Radiant Heater Control
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Wardroom Window
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System
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Scientific Airlock Installation
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-Z Scientific Airlock Filter and Desizcant
Equipment

+Z2 Scientific Airlock Filter Equipment

SAL Repressurization Subsystems

Maximum Urine Delivery Rate

Proof Pressure Tests

Trash Disposal fubsystem Trash Bag Locations
Trash Disposal Airlock Sequential Operation
Trash Lock Loading Equalize Pressure

Trash Lock Trash Bag Eject

Waste Management Schematic

Skylab - Orbital Workshop DCR HSS Waste Manage-
ment Subsystem

Waste Management Subsystem

L4000 ML - Urine System Volume Determinator Stowage

Waste Management Subsystem

Waste Management Collection

Waste Management Subsystem Fecal Collection Bag
Fecal Collector -~ Functional Diagram

Skylab - Orbital Workshop Collection Bag Usage
Scheme

Waste Management Subsystem Fecul Contingency Bag
Urine Collection and Sampling Equipment

Waste Management Subsystem Debris Collection Bag
Trash Disposal Subsystem Trash Bag Locations
Trash Collection Bags

Fecal/Urine Collector

Fecal/Urine Ccilector - Block Diagram

Fecal and Urine Collection Facilities
Fecal/Urine Collector
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Typical Urine Drawer - Schematic

Urine Chiller - Functional Diagram

Urine Separator - Exploded View

Waste Management Subsystem

Waste Processor Chamber

Waste Processing and Urine Management Facilities
Waste Processor -~ Functional Diagram

Urine System Dump Compartment

Waste Management System Fecal and Urine Return
Containers

Vacuum Cleaner Assembly
Vacuum Cleaner and Accessories
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Daily Urine Volume (Mechanical vs LI Analysis) -
Second Mission

Daily Urine Sample Size - Second Mission
Wardroom Food Reconstitution Waste Dispensers
Water Dispenser

Rehydration Backup Provision (Drinking Water
Dispenser)

Water System

Potable Water System Schematic

WMC Water System Schematic

Water Storage Prorisions

Water Tank - Schematic (Typ)

Pump Assembly Water Agitator
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Installaticn

WMC Water Supply Network
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SECTION 1 ~ INTRODUCTION

l.l

PURPOSE AND SCOPE

This document reviews the teckLnical aspects of the Skylab-Orbital
Workshop, including the original concepts, goals, design
philosophy, hardware and testing. Discussed is the evolution

from a "Wet Workshop " (one flown as the fuel tank of a rocket
into orbit, drained, purged and then converted to a habitation area
by the crew) to a "Drv Workshoo" {one launched completely outfitted

in orbital configuration).

The final flight configuration, overall test program, and mission

performance are discussed in detail.

Fach of the major systems will be identified and described. The
design requirements and systems description will be reviewed. Areas
such as contamination, flammability, toxicity, safety and reliability
are evaluated and their tradeoffs discussed.

The testing program is reviewed. The major problems uncovered during
test and their solutions are detailed.

Mission results and performance during launch and flight are provided.
Special tests and analysis to support the mission are included and
reviewed. Long term orbital effect on systems and hardware are
evaluated. Of special interest are the conclusions and recommendations

made for future programs.

Objectives and methodology of the reliability program are reviewed
in detail. Items such ~8 failure mode and effect analysis, critical

items 1list, reliability model, trade studies and design reviews are
discussed in detail. Supprlier evaluation along with nonconformance
reporting, analysis, corrective action control, and alert investigations
are revieved., In addition a section on mission reliability is included.

l-1
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The crew safety program is reviewed step by step from the design
phase through thce testing phase and mission performance. The
safety studies performed and their affect on requirements are

revieved. The controls used during testing are also explained.

The overall testing vrogram is discussed in detail. Items such as
the planning of test fl.w, compliance with test requirements and
test procedures are reviewed. Component testing, both supplier and
in-plant, and component qualification and development are described.
Structural static and acoustical vibration testing along with the
acceptance testing of flight systems and the performance testing

of various support systems is reviewed. Ihtegrated vehicle testing
and KSC testing with the other vehicles, the performance of inter-

faces and overall compliance to requirements is discussed

Engineering program mancgement is reviewed with descriptions of
the planned and actual controls used and their effect on program
performance.

The implementation and results of configuration control on the
vehicle and GSE through the program including the management of OWS
interfaces is described.

A section is included on new technology describing new methods and

procedures as applicable to aerospace and non-aerospace industries.

A final section on conclusions and recommendations discusses the
systems and system elements which performed notably above and below
nominal, reviewing the contributing factors and making recommendations
for future system designs. Progrum planning, testing, and mission

support are also discussed and recommendations for future programs are
made.
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1.2

1.2.1

[R—

SUMMARY

Design Goals - The primary objective of the Skylab Program was to

demonstrate that man could survive in space or a long period of time and

do useful work., To this end, the 100 ton (90,718 ki.ograms'® Skylab experimentai
space station was developed through many ‘.onceptual changes to

provide a laboratury for extended manned spaceflight in which man

could perform inflight experiments to:

o Obtain biomedical data for evaluating the effects of zero-g missions
of 28 to 56 days on crew members.

o Determine the feasibility and advisability of manned zero-g spaceflights
for durations greater than 56 days.

o Obtain solar and scellar astronomy data to ccntinue ai.d extend studies
beyond the limits of terrestrial observations.

o Obtain data on the earth's surface to evaluate its resources.
Obtain data for the deveiopment of operational procedures for extended
manned orbital operation,

o Obtain engineering and technological dats for development of advanced
space vehicles and equipment,

The Skylab which came into teing is shown in Figure 1.2.1-1., Figure

1.2,1-2 identifies the modules and their function as follows:

o Command and Service Module (CSM) - Provides the vehicle that transports
the crew to and from Skylab 1 (SL-1), The CSM is docked/undocked with
SL=1 in essentially the same manner as it was accomplished with the lunar
landing vehicle in the Apollb Program.

o Muiltiple Docking Adapter (MDA) - Provides SL-1 docking capability for
the CSM and control and display panels for Solar and Farth Resources
Experiments (EREP),

0 Apollo Telescope Mount (ATM) - Provides a solar observatory for the
study of sun activity free from distortion caused by the earth's
atmosphere and apprcximately one-half of the Skylab electrical power,

o Airlock Module (AM) - Provides the "nerve center" for the orbitiag
agsembly or cluster; i.e,, control and distribution for electrical pover
and oxygen-nitrogen crew atmosphere, equipment for voice, real time or
taped, and digital command communications betiween Skylab ind ground
s*ations, Further, it provides e.ternal access for ATM film servicing
and other extra vehicular activity.

1-3
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Function

FIGu:.E

Command Multiple Apolio Airlock Instrument Orbital
and Service Docking Telescope Module/Fixed Unit Workshop
Module Adapter Mount Arlock Shroud
Crew Ascent Docking Solar Power Control Launch Primary Living
& Descent Interface Observation & Oistribution Vehicle & Working Ares
Environmental Control
ATM/EREP Control Experiment
Controls Laborstory
& Duisplays Utitity Center
Data System Stowsge
Extravehicular
Actwity Port
1.2.1-2 SKYLAB - FUNCTION OF MODULES
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o Instrument Unit (iU) - Provides SL-1 launch vehicle control.
o Orbital Workshop (OWS) - Provides the primary living and working
accommodations for the crew, experiment laboratory accommodations,

stowage for supplies and approximaiely one-half of the Skylab
electrical power.

In accordance with the Skylab design goals, MDAC-W converted the
S-IVB/IB Stage 212 into +' : OWS. A profile of the module is shown in
Figure 1.2.1-3. First, all Apollo S-IVB propulsion and related systems
were deleted to provide a structural house. The house, in turn, was
then furnished to meet the requirements impoused on the module. The
converted hydrogen tank became a 10,000 cubic foot (283 meters3)
habitation area embodying a crews quarters for sleeping, food, water
and waste management systems, and areas for recreation and experimentation.
In addition to the crews quarters, an area forward of it provides
extensive space for additional experimentation and storage of supplies.
The intent was to outfit the OWS in its Skylab role to accommodate three
crewvmen for missions of 28, 56 and 56 days each, without resupply during
the 8 month mission depicted by the mission design profile shown in
Figure 1.2.1-4. Further, the S-IVB oxygen tank, a basement, was con-

verted to a waste tank for the disposition of cluster trash as it
accumulated.

Externally on the OWS, the followin; subsystems were installed.

o Meteoroid Shield - To increase the probability of no pressure loss
equal to or greater than 0.995 from the habitation area.
o Solar Array - To provile electrical power to the AM power distribution
and control systiem.
o Thruster Attitude Conirol - To provide primary attitude contrel through
the ATM control moment gyroscopes (CMG) spin-up end backup/supplemental
attitude control for CMG desaturation, for maneuvers and docking transients.

Miscellaneous equipment for subsystems installed in both the forward and aft
skirts of OWS will be discussed in Section 2.2.

. 1-6
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l1.2.2

l.2.2.1

1.2.2.2

Mission Results

SL-1 Mission - SL-1 was launched from Launch Complex 39A at KSC on

14 May 1973 (134:17:30:00.589 Greenwich mean time (GMT)). The SL-1
launch phase was nominal until approximately 63 seconds ground

elapsed time (GET), at which time the OWS meteoroid shield external
temperatures went off scale followed by the loss of the three meteoroid
shield secured indications. The noted instrumentation was the first
indication of the loss of the OWS meteorcid shield. During the same
time period, SAS Wing 2 secured indication was lost, indicating that
SAS Wing 2 was no longer secured to the OWS. SAS Wing 2 was sub-
sequently separated from the OWS, at approximately 593 seconds, due

to retrorocket plume impingement forces.

SL-1 was inserted into a 433.8 by 431,5 kilometer (KM) orbit, Habitation
area venting and waste tank venting was nominal. Jettison of the radiator
protective shield occurred at 17:39:57.14 GMT and was ncminal. SAS

beam and wing deployment commands vere issued.at 18:11:05.73 seconds

GMT and 18:22:05.00 seconds GMT, respectively; however deployment was

not nominal. SAS Wing 2 was lost at approximately 593 seconds, as
previously described, and SAS Wing 1 was prevented from deploying by the
remnants of the OWS meteoroid shield. In an attempt to deploy SAS Wing 1,
the SAS beam fairing and SAS wing section backup commands (Airlock Module
Digital Command System) were transmitted, but deployment was unsuccessful.
SAS Wing 1 was finally deployed by the SL-1/SL-2 crew during extravehicular
activities (EVA) on day of year (DOY) 158.

SL-2 Mission - SL-2 was launched from Launch Complex 39B at KSC on

25 May 1973 (145:13:00:00,50 GMT) which was ten days later than originally
planned. The ten-day launch slip was required to assess the Skylab
thermal and electrical environment due to the ioes of the meteoroid shield
and SAS Wing 2 and to develop hardware and workarounds required to

provide a habitable environment for the SL-1/SL-2 mission. Prior to
Skylab habitation, the SL-2 crev performed a standup EVA (SEVA) at
23:52:15 GMT in an unsuccessful attempt to deploy SAS Wing l.

Following the SEVA, SL-2 hard dock with the cluster was confirmed at
03:52:00 GMT after several unsuccessful attempts. OWS activation of

1-9
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l.2.2.3

the OWS was modified to allow for the deployment of the JSC parasol
(146:21:52:00:00 to 147:01:30:00 GMT) from the solar SAL at which
time the OWS interior temperatures started to drop. As previously
noted, SAS Wing 1 was deployed on DOY 158 during EVA and the wing
sections reached full deployment after three revolutions. Skylab

deactivation on DOY 173 was nominal. Command Module (CM) splashdown
occurred on MD 29 (173:13:49:49 GMT).

Fifty-five experiments and 9 subsystem/operational de“ailed test
objectives had been planned for the SL-1/SL-2 missicn. Of these,
data were obtained on U6 experiments and 9 subsystem/operational
detailed test obJectives. Those experiments cancell=d or having low
performance were generally those of low priority.

SL-3 Mission ~ SL-3 was launched from Launch Complex 39B at KSC on

28 July 1973 (209:11:10:50.30 GMT). The CSM docked to the cluster at
209:19:38:50 GMT and subsequently performed a normal SWS activation.

On DOY 218 the crew went EVA to install ATM film, deploy S149 and
deploy the twin-pole sun shield. A second EVA on DOY 236 was performed
to install the rate gyro package and change out the ATM film. During
third EVA on DOY 265 ATM film, S149 and S230 sample retrieval were
accomplished. Cluster deactivation was nominal and was terminated

with CM splashdown on 25 September 1973,

Forty-four experiments, 14 science demonstrations, 11 student investi-
gations, and 8 subsystem/operational detailed test objectives had been
planned for the mission. The science demonstrations were carried as
candidates to be performed at crew option. All planned objectives

vere not completed, but data were obtained on all but two of the planned
objectives. Only six of the original 14 science demonstrations were
worked into the schedule by the crew. In addition, data were obtained
on 12 experiments, two science demonstrations, and eight special tests
which had not been planned, but which were requested of and approved by
the Flight Management Team for performance during the mission. A

student investigation was added also, but failed when a performance was
attempted.

1-10
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1.2.2.4 SL-4 M.4sion - SL-4 was launched from Complex 39B at KSC on
16 Nerember 1973 (320:14:01:23,4 GMP). CSM docking to the cluster
was successful after the third attempt and it was followed by a
normal workshop activation. The significant OWS system changes
made for the SL-4 mission were (1) The M092 experiment vent was
vented to the waste tank for non-propulsive venting to conserve
Thruster Attitude Control System (TACS) gas, and (2) additional
consumables (towels, urine bags, food, etc.) were flown up for an
extended mission of 84 days.

Four EVA's were conducted during the SL-k mission on DOY's 326, 359,
and 363 of 1973 and DOY 3k of 19T4. SL-4 splashdown occurred on
8 February 1974 completing an 84 day mission.

For SL-b, 56 experiments (including hydrogen alpha telescope and
earth visual observations), 26 science demonstrations, 13 student
investigations, and 15 subsystem/operational detailed test objectives
were planned. In addition, plans vere made to observe the comet
Kohoutek using hardware from 6 of the on-board corollary experiments
and 6 Apollo Telescope Mount experiments. The science demonstrations
were classified as candidates to be performed at the crew's option.
All planned objectives were not completed, but data were obtained on
all except 3. The crew was able to schedule only 11 of the planned
26 science demonstrations. In addition, data were obtained on 5
additional subsystem/operational detailed test objectives.

These objectives were not planned before SL-4 launch, but were
requested during the mission and approved by the Flight Management
Team.

1.2.2.5 Mission Summary - The OWS meteoroid shield failure on SL-l caused a
ten day delay in the launch of SL-2. Further, corrective action taken
due to the anomaly introduced previously unplanned crew tasks during
SL-2 and SL-=3. During the early days of SL-2, experiment operations
vere somevwhat reduced because of high temperatures in the workshop and
the limited electrical power available, Hovever, after deployment of the

1~11
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JSC prrasol sun-shield, enabling temperature reduction and the
depl ,yment of SAS-1 providing approximateiy a 50 percent increase

in power, experiment activities were resumed generally as planned.

Figures 1.2.1-4 and 1.2.2,5-1 show a comparison between the Mission
Design Profile and the Mission Actual Profile. The overall mission
life for Skylab planned for 8 months actually became 9 months. The
crew occupancy periods planned for a total of 140 days ended up being
171 days, a significant 22 percent increase in crew flight time.

Table 1.2.2.5~1 shows a comparison between the calendar date, the day
of year and mission day, for the overall Skylab mission life.

Table 1.2.2.5-2 tabulates experiment activity in the OWS for each
mission and reflects the percentage completion.

’
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Table 1.2.2.5-1
& SKYLAB MISSIONS - CALENDAR DATE/DAY OF YEAR/MISSION DAY

CALENDAR|DAY OF |[MISSICN|CALENDAR|DAY OF |[MISSION{CALENDAR |[DAY OF|MISSION
DATE YEAR DAY DATE YEAR DAY DATE YEAR DAY

NRSOR T TR, SN

*105-15-73| 135 | -10 |07-01-73] 182 | -- |08-17-73} 229 | 21

05-16-73| 136 | -09 |07-02-73| 183 | -- |08-18-73] 230 | 22

i 05-17-73| 137 | -08 [07-03-73| 184 | -- |08-19-73| 231 | 23
i 05-18-73| 138 | -07 |07-04-73] 185 | -- |08-20-73} 232 | 24
L 05-19-73| 139 | -06 |07-05-73] 186 | -- |08-21-73] 233 | 25
(s 05-20-73] 140 | -05 |07-06-73] 187 | -- |08-22-73| 234 | 26
: 05-21-73| 141 | -04 |07-07-73| 188 | -- |08-23-73| 235 | 27
5 05-22-73| 142 | -03 |07-08-73| 189 | -- |08-24-73| 236 { 28
¢ 05-23-73| 143 | -02 |07-09-73] 190 | -- |08-25-73| 237 | 29
] 05-24-73| 144 | -01 |07-10-73| 191 | -- |08-26-73] 238 | 30
% sL-2 107-11-73] 192 | -- ]|08-27-73| 239 | 31
05-25-73] 145 | 01 |7-12-73] 193 | -- |08-28-73| 240 | 32

: 05-26-73| 146 | 02 |07-13-73| 194 | -- |08-29-73| 241 | 33

; 05-27-73{ 147 | 03 {07-14-73| 195 | -- [08-30-73| 242 | 34
- 05-28-73| 148 | 04 |07-15-73| 196 | -- |08-31-73]| 243 | 35
§‘ 05-29-73| 149 | 05 [07-16-73| 197 | -- [09-01-73] 244 | 36
4 05-30-73| 150 | 06 |07-17-73| 198 | -- |09-02-73| 245 | 37
4 05-31-73} 151 | 07 {07-18-73{ 199 | -- [09-03-73] 246 | 38
H 06-01-73( 152 { 08 (07-19-73( 200 | -- [09-04-73| 247 | 39
é; 06-02-73] 153 | 09 |07-20-73| 201 { =-- {09-05-73]| 248 | 40
4 06-03-73] 154 | 10 |07-21-73| 202 | -- |u9-06-73| 249 | &
” 06-04-73| 155 | 11 [07-22-73| 203 | -- |0S-07-73] 250 | 42
06-05-73| 156 | 12 |07-23-73| 204 | -- [09-08-73]| 251 | 43

06-06-73| 157 | 13 {07-24-73| 205 | ~-- |09-09-75} 252 | 44

06-07-73| 158 | 14 |07-25-73| 206 | -- |09-10-73| 253 | 45

C6-08-73| 159 | 15 |07-26-73| 207 | -- |09-11-73| 254 | 46

06-09-73| 160 | 16 [07-27-731 208 | -- |09-12-73| 255 | 47

06-10-73| 161 | 17 SL-3 [09-13-73] 256 | 48

06-11-73] 162 18 |07-28-73] 209 01 09-14-73| 257 49
06-12-73| 163 19 07-29-73 | 210 02 09-15-73| 258 50
06-13-73| 164 20 07-30-73| 211 03 09-16-73| 259 51
06-14-73| 16% 21 07-31-73| 212 04 09-17-73| 260 52
06-15-73] 166 22 08-01-73| 213 05 09-18-731 261 53
06-16-73| 167 23 08-02-73) 214 06 09-19-73| 262 54
06-17-73| 168 24 08-03-73| 215 07 09-20-73| 263 55
06-18-73| 169 25 08-04-73 | 216 08 09-21-73| 264 56
06-19-73| 170 26 08-05-73| 217 09 09-22-73| 265 57
06-20-73| 171 27 08-06-73( 218 10 09-23-73| 266 58
06-21-73] 172 28 08-07-73| 219 N 09-24-73} 267 59
06-22-73| 173 29 |0%-08-73] 220 12 09-25-73| 268 60

06-23-73| 174 -- °108-09-73] 22V 13 09-26-73 | 269 --
06-24-73] 175 - 08-10-73| 222 14 09-27-73| 270 --
06-25-73| 176 - 08-11-731 223 15 09-28-73] 271 --

06-26-73| 177 - 08-12-73 | 224 16 |09-29-73| 272 --
06-27-73{ 178 | == 08-13-73| 225 17 |09-30-73] 273 --
06-28-73( 179 - 08-14-73 | 226 18 10-01-73| 274 --
06-29-73| 180 - 08-15-73 | 227 19 10-02-73| 275 -
06-30-73] 181 | - 08-16-73 | 228

#gL-1 Teunzh was on U5=14=T3 (DOY 134)
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Table 1.2.2.5-1

(Continued)

SKYLAB MISSIONS - CALENDAR DATE/DAY OF YEAR/MISSION DAY
CALENDAR [DAY OF {MISSION; CALENDAR (DAY OF [MJSSION| CALENDAR DAY OF [MISSION
DATE YEAR DAY DATE YEAR DAY DATE YEAR DAY
10-03-73| 276 -- 11-17-731 321 02 01-02-74| 02 48
10-04-73{ 277 -- 11-18-73| 322 03 01-03-74| 03 49
10-05-73| 278 -- 11-19-73| 323 04 01-04-74} 04 50
10-06-73| 279 -- 11-20-73| 324 05 01-05-74] 05 51
10-07-73| 280 -- 11-21-731 325 06 G*-06-74| 06 52
10-08-73| 281 -- 11-22-73| 326 07 01-07-74] 07 53
10-09-73| 282 - 11-23-73| 327 08 01-08-74] 08 54
10-10-73| 283 -~ 11-24-73| 328 03 01-09-741 09 55
10-17-73| 284 -- 11-25-73| 32° 10 01-30-74| 10 56
10-12-73} 285 -- 11-26-73] 330 11 01-11-741 1 57
10-13-73| 286 -- 11-27-73] 331 12 01-12-74| 12 58
10-14-73| 287 .- 11-28-73| 332 13 01-13-74] 13 59
10-15-73| 288 .- 11-29-73| 333 14 01-14-741 14 60
10-16-73| 289 - 11-30-73| 334 15 01-15-74} 15 61
10-17-731 290 -- 12-01-73| 335 16 01-16-74| 16 62
10-18-73| 291 -~ 12-02-73| 336 17 01-17-74]1 17 63
10-19-73| 292 -- 12-03-73| 337 18 01-18-74( 18 64
10-20-73| 293 -- 12-04-73| 338 19 01-19-74] 19 65
10-21-73| 294 -- 12-05-73 | 339 20 01-20-741 20 66
10-22-73| 295 -- 12-06-73| 340 21 01-21-74| 21 67
10-23-73 | 296 -- 12-07-73| 341 22 01-22-74] 22 68
10-24-73| 297 -- 12-08-73| 342 23 01-23-74| 23 69
10-25-73| 298 -- 12-09-73| 343 24 01-24-74} 24 70
10-26-73| 299 - 12-10-73 ] 344 25 01-25-74| 25 71
10-27-731 300 -- 12-11-73| 345 26 01-26-74{ 26 72
10-28-73| 301 -- 12-12-73| 346 27 01-27-741 27 73
10-29-73| 302 -- 12-13-73| 347 28 01-28-74| 28 74
10-30-73| 303 -- 12-14-73| 348 29 01-29-74]| 29 75
10-31-73| 304 -- 12-15-73] 349 30 01-30-74| 30 76
11-01-73| 305 -- 12-16-731 350 31 01-31-741 31 77
11-02-73| 306 -- 12-17-73| 351 32 02-01-74| 32 78
11-03-73| 307 -- 12-18-73}1 352 33 02-02-741 33 79
11-04-73] 308 -- 12-19-73| 353 34 02-03-73] 34 80
11-05-73| 309 -- 12-20-73 | 354 35 02-04-74| 35 81
11-06-73| 310 -- 12-21-73 ] 355 36 02-05-74| 36 82
11-07-73| 31 -- 12-22-73 356 37 02-06-74| 37 83
11-08-73| 312 -- 12-23-731 357 38 02-07-74| 38 84
11-09-73] 313 c- 12-24-73| 358 39 02-08-Th| 39 85
11-10-73| 314 -- 12-25-73| 359 40
11-11-731 315 -- 12-26-73| 360 4
11-12-73] 316 - 12-27-731 361 42
11-13-73| 317 .- 12-28-73 | 362 43
11-14-73| 318 - 12-29-73| 363 44
N-15-73| 319 .- 12-30-73| 364 45
SL-4 |]12-31-73| 365 46
11-16-73| 320 o0 01-01-74] 01 LY
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SECTION 2 - SYSTEM DESIGN AND PERFORMANCE

2.1

2.1.1

GENERAL

Design Philosophy

We believe some 30 to 35 years before Skylab's OWS became an orbiting
reality, the notion was diszussed by Dr. Wernher van Braun anc¢ some
of his very cluse associates in Peenemunde, Germany. The iden was to
convert an orbiting, spent rocket stage into s "house" for man to
visit, a workshop to work in, a laboratory in which to conduct
erperiments, A proposal to study the use of Saturn SIV as a Manncd
Space Laboratory was documented in November 1962 by the Jouglas
Aircraft Company. The Space Laboratory and a Gemini capsuic with two
cr:wmen vere to be boosted from the Atlantic Missile Range (AMR) by
an S-1 launch vehicle. Following separation from the booster, the
SIV propulsion system was to insert itself and Gemini into a 250
nautical mile (463.3 kilometer) orbit. After SIV hydrogen depletion,
the 4200 ft3 (118.9 meters3) tank would be purged, then filled with
stored atmosphere and conditioned for crew entry. Figure 2.1.1-1

showy. this early concept.

A number of different concepts for workshop were envisioned by study
groups; some involving new hardware. Hovever, the Apollo Extensions
Support study established that system equipment and module componeats
developed for Apollo, with logical modification, were more than acde-

quate to support the development of an orbiting workshop.
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From the very first thoughts of a space workshop and continuing
through the evolution studies, the utiiization of previousliy
developed hardware was significant in the thinking. The Orbital
Workshop (OWS) was not to be the product of a number of development
flight articles, each more sophisticated than its predecessor as
was planned for Apollo, but rather it was to have its development

foundation in the Apollo Program.

Throughout the growth period of the OWS, every concept, every new
innovation was reviewed and evaluated in terms oS design simplicity
and low cost. There is inherent high level hardware reliability in
design simplicity as is the case for inherent low cost. However,
having infinitely higher regard in the minds of all was to design
safety into the OWS for the crews and assurance for mission accom~
plishment. All systems affecting crew safety and mission accompiish-
ment are redundant. Further, the OWS is designed fireproof and ofters

no hazard from off-gassing and toxicity.

Following is a tabulation of the general OWS design principles:

A. No single failure in any system will cause or require ab-rt or
compromise crew safety.

B. During an abort, no single failure in a subsystem or component

shall compromise crew safety.

2.1-3
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C. Mission/Safety Critical Items whose failure could adversely
affect crew safety or result in not achieving primary mission
objectives was documented in terms of:

o Justification for retention in design

o Efforts to preclude the occurrence of the critical failure
or to miunimize the consequences of the failure

o Provisions for inflight maintainability

0 Description of contingency procedures

o Consideration of other factors.

D. No single failure point in the Bmergency and Warning System will
cause failure to indicate an emergency or warning or cause a

faise emergency or wvarning.

E. Sharp corners and edges that could cause laceration or puniture

wounds were eliminated.

Wet to Dry Evolution

The SIV-Gemini space laboratory proposal previously mentioned pro-
vided the first conceptual definition of a "wet" workshop; "wet"
meaning that SIV was a propulsion stage until orbited, rendered safe
(passivated) and conditioned for crew occupancy. Following the
Apollo Extensiors support study, there was much talk of using an
S-IVB/IB to carry a Command and Service Module (CSM) with sun-study
telescopes into orbit. The telescope assembly for deployment by

the crew to the service module for operation was the initial Apollo

Telescope Mount (ATM) concept. Through furthcr Apollo Applications

201"'1‘
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studies, the first concept for the space station to have hardware
modification and development started was a "cluster" consisting of
an Airlock Module (AM), Multiple Docking Adapter (MDA) and OWS, "wet"

workshop as shown in Figure 2.1.2-1 in-orbit with docked CSM.

Modificaéions of the S-IVB into the wet workshop could not in any

vay compromise the S-IVB function for its basic Apollo mission role.
This, of course, together with the requirement for materials com-
patibility with LH2, greatly reduced the capability for pre-
installation of equipment in the modified S-IVB. In turn, this
required extensive activation tasks on the part of the flight crew

to ready their laboratory for work. In retrospect, the enormity of
this effort (i.e., the de-installation of MDA launch stowed equipment,
its transfer to and re-installation in OWS, checkout and operation

activation, together with several days of interruption in the

(PR

collection of sequential medical data on the crew) makes it somewhat
difficult to totally recapture the rationale to Jjustify development

of the concept. Perhaps that rationale is obscured by what we
recognize as the magnificence of the "dry" workshop, its pre-installed
systems/equipment, and the way they have performed for Skylab. But,
the "wet" workshop experiment was a logical step in the acquisition

of Skylab and wculd have provided a very fruitful missi. , '

Figure 2.1.2-2 depicts the launch configuration for "wet" workshop,
the first to be mocked-up and delivered to Marshall Space Flight .-.{
Center (MSFC). Its accommodations were minimal, consisting principally ‘

of "house" structure, rooms, ceiling, floor, insulation and ventilation

ducting.
2.1-6
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By now, the notion to modify a lunar module ascent stage (IM) into a
control center for an ATM and lauch them together on a Saturn 1B for
docking to the "Wet" Workshop was being discussed. The rendezvous

and docking of these vehicles was considered to be effected in an un-
manried mode. This required the development of a major new operational
capability; immanned rendezvous and docking. It was recognized, how-
ever, that if the workshop launch stack Tould accommodate an ATM, it
would greatly simplify the program by elimination of extensive pro-

grammatic and cechnical requirements,

The capability to reduce program cost and complexity by eliminating the
ATM as a free flying module, the ability to rapidly activate the work-
shop by having systems/equipment pre-installed and checked out prior
to launch, and the capability to significantly expand the mission
potential with the weight margins offered by a Saturn V launch as
compared to a 1B launch supplied rationsale for a conversion of the
Workshop from "Wet" to "Dry". The successful moon landing of July 1969,
changes in funding and the reduction in planned moon visits made

Saturn V vehicles available for Apollo Applications, thus, the next
logical step in Workshop develcpment, the conversion from "Wet" to
"Dry". This also allowed the use of the CSM with minimum medification
as purely a crew logistics vehicle; it would not be required to pro-
vide logistics support from the expanded capability of the space
station. Plans were formulated for the launch of two Saturn V workshops
with ATM's to be visited up to seven times; however, this was re-defined

in 1970 to the program we know today and renamed Skylsb,

801-8

A . e Y



2.1.3

e s

By fer ‘iie most affected moiule in the Skylab cluster by tne "wet" to
"dry" conversion was the OWS. The requirement to preserve the S-IVB
as a propulsive rocket stage no longer existed. Pre-installation of
systems/equipment brought about three significant philosophical
changes in the design of OWS. First, the weight allowance, an
increase of nearly 150,000 pounds (68,000 kilograms) for the cluster,
could be used to reduce the criticality of weight in systems design.
This permitted =~ore rugged and redundant designs with greater inherent
safety and expected operational life. Secondly, the enhanced capa-
bility produced & philosophical shift in design from the space station
as an experiment to the position that Skylab was a major operational
step in space exploration; that the medical and scientific/technology
activities stood alone on the experimental basis. Last, the total %
mission life time, and therefore the experiment program, was greatly

expanded and enriched by the availability of the ample weight margins.

Overall Test Frogram

A, Test Program - The DAC-56697, Satu-n I Workshop (SIW) Test Plan of
17 September 1968, for the "wet ;bncept," outlined a test program
which would verify flight readiness and demonsirate that workshop
hardware would in no way Jeopardize the performance and reliability
of the basic S-IVB flight vehicle. The plan encompassed Engineering
Laboratory tests of components and subsystems, special system tests,
acceptance firing program at the Sacramento Test Center (STC), pre-
launch checkout program at Kennedy Space Center (KSC) and flight
test planning and evaluation. The requirements within the plan
vere combined to form a complete program so that the accumulated

test results could be utilized for the final verification of launch

configuration of the workshop.
2 01-9
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The component and subsystem testing program guidelines and

Wb el e

constraints were based on a one-of-a-kind sxperimental vehicle

3 concept, wiith primary emphasis placed on testing of hardware whose

¥

Q fgilure could adversely impair crew safety and hardware whose

§ failure could result in failure to achieve primary mission

% objectives.

w‘g

%j The following stage checkout and testing guidelines were estab-

¥

% lished in order to reduce ground support test equipment regquire-

¢ :
§§ ments and to ensure that equipment verification tests were 8
- ;
§§ accomplished on hardware in a near-launch configuration as i
gé possible: f
§ 1/ Acceptance Firing (STC)

gﬁ

& .
g‘ o Install SIW in Beta test stand and perform essentially :
g

£ booster stage checkout plus meteoroid shield deployment.

3 o Airlock simulator not to be used.

¥

.

2/ Launch Preparations (KSC) :

o Install SIW in low bay for Experiment Verification Tests

(EvT) . Cy
o Conduct EVT with other cluster interfaces es required.
0 Perform plugs-in and plugs-out leak tests,

o Electromagnetic Compatibility (EMC) tests were to be per-

formed during EVT utilizing turn-on and lock philosophy.

0 fheckout in stack as required to ensure integrated booster

and workshop system operation.

R L T E R
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Test Program Changes 'Wet" to "Dry" - Testing effort expended
prior to the decision to change the OWS concept from "wet" to
"dry" included testing that was common to beth the "wet" and "dry"

concept and that which was peculiar to only the "wet" concept.

1/ Component and Subsystem Testing - The component test program
at the time of conversion from "wet" to "dry" consisted of
71 line items, of which 24 were "wet" peculiar and 7 had been
completed. The completed items were primarily development
tests necessary to evaluate various tank penetration sealing
devices, floor and wall attachments and a major test program
on the LH2 insulation system. The LH2 insulation tests
consisted of coupon testing to determine outgassing characteristics
of the hydrogen which would enter the insulation foam cells

during the LH, loading at STC and at KSC. After determining

2
from the coupon tests that the insulation system could be
satisfactorily passivated, an 8 foot (2.4 meter) diamever tank
test was conducted to determine the conductivity of the in-
sulation system and to determine the passivetion time required
prior to halitation. The conductivity test was conducted at
STC consisting of =2a LH2 loading and boil off teat. The
passivation test was conducted at MSFC. The tank was installed
in a vacuum chamber loaded with LH2, subjected to pressure
profile simulating launch to orbit conditions. During the
passivation and during habitation modes, gas analyses were made

to assure that passivation was satisfactory. These data were

to be used in support of phe mission operation procedures,

2.1-11
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2/ System Testing - The change from wet to dry concept had a
significant impact on the system level testing; however, the

decision was made early enough in the program that the expended

resources consisted of planning effort only.

Malor program changes were the elimination of the acceptance
firing program at STC and the SIW no longer reguired propulsion

system verification checks at Huntington Beach and at KSC.

C. Overall Program (Dry) - The overall test program objectives and

guidelines for dry concept were basically the same as for wet
concept. The mgjor difference being in the realignment of
specific tests to match the dry concept hardware. The test

program that was performed consisted of the following tests:

o Component and Subsystem (Development, Qualification, and

Preoduction Acceptance).

0 Special Design Support and Verification.
(o] Spacecraft System and Integration.

o Mission Support.

Component and Subsystem Tests - Development, Qualification and
Production Acceptance testing were accomplished at the hardware
level of assembly. Development tests were conducted on prciotype

or pre-production configurations depending on the particular phase of

design evaluation at the time of initiation. Tais type of testing
was accomplished to optimize hardware configuration and to identify

areas of marginal design performance. These tests were also

2.1-12
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utilized to demonstrate fulfillment of design obJjectives,
Qualification tests were performed on production hardware to
demonstrate that design and production methods would result in

8 product which fulfilled the design vequirements. Production
acceptance tests were performed on all deliverable items to ensure
that production methods and quality control produced an article

which satisfied the design intent.

The development and qualification program consisted of 15k line

items, These tests are identified in Section 5 of this report.

Special Design Support and Verification Tests - Design Support

and Verification Tests are categerized as special tests since

they do not meet the requirements of the standard OWS Develor =t
or Qualification Test Program. These tests were usually conducted
at government facilities and/or subcontractor facilities and
required MDAC-W hardwere, software and technical support personnel,
There were 27 of these tests conducted., Zero-gravity and neutral

buoyancy test programs were incluued in this category.

Spacecraft System Tests - Post-manufacturing checkout of the OWS-1
was accomplished in the Huntington Beach Vehicle Checkout Lab-
oratory during the period 6 November 1971 through 16 August 1972.
The objective of this activity was to (&) provide an OWS checked
out and calibrated to an extent consistent with the ambient 1-G
environment, and (b) provide an OWS acceptable for planned, inte-
grated cluster system testing at the Kennedy Space Center.

Checkout was performed utilizing flight hardware within tie

2 . 1—13
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constraints of hardware availability. Detail test requirements,
acceptance criteria and operational constraints were provided in
the 1BB3429, OWS-1 Test and Checkout Requirements, Specifications

and Criteria.

Checkout was initiated with the st 't of Continuity/Compatibility
testing and continued through completion of the All Systems Test,
EMC, and residual subsystem retest: During this checkout period,
all subsystems, Crew Compa-tment Fit and Function, and the AST and
EMC tests were performed. Thousands of elapsed hours of manu-
fecturing work were accomplished in parallel., No major problems
were encountered., All items associagted with onmen work being trans-
ferred to KSC were ncted in Secticn ' or the MDC G3078B, OWS Pre-

delivery urnover Review Report, Huntington Beach.

Integrated Vehicle Testing (KSC) - There were three primary arcas

of operations at KSC:

o Operations and Checkout Building (0&C) - General office area
and Acceptance Checkout Equipment (ACE) rooms located on the

third floor.

o Vertical Assembly Building (VAB) - Office area, receiving
inspection, ejuipment steorage, assembly and test site; MDAC
OWS-1 occupied some of the low bay area, High Bay 2, 20A and B,

2LB, 25B, and 26B of Towers A ani B,

o  Launch Complex 39A - OWS-1 Launch Site,

All pre-flight preparations and testing were conducted in accord-
aace with the Pre-Flight Operations Procedures (POP),

2 . l‘lh
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A1l High Bay 2 facilities, GSE, electrical, mechanical, and fluid
systems were verified and certified as functien:1, clean, and

mercury free rrior to vehicle hookup.

The (WS-1 arrived at KSC on 22 September 1972 and was inspected and moved f
to the VAB on 23 September 1972. Integrated Vehicle w2stirng (KSC)

consisted of verification of each ¢ bsystem, system verification

and final system test and lauich Electrical end mechanical

closeout was started 2 April 1973 and completed 13 April 1973.

All test problems were satisfactorily resolved pricr to launch.

Section 5 of this report lists in detail each test conducted and their

anomelies and resoliutions.

Mission Support Tests - Real time Mission Support was provided by
MDAC-W during mission simulations KSC prelaunch activity and

Skylab missions through the OWS Mission Support Room (MSR).

The MSR was the focal point of OWE mission support activities and
specie’ tests .utilizing the OWS Backup and development and qualif-
icatior. hardware. Special tests were initiated by MSR action item
or direct request from the NASA or MDAC-W authorized versonnel.
All requests were in the form of a Mission Support Test Request
(MSTR) and were reviewved end approved by a MSR Room Captail,

VCL Chief Prngram Engineer, and the NASA Senior Checkout

Representative.

€.}-15
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2.1.k,1

Special tests were performed to simulate certain mission
problems and test sclutions prior to transmittiig acilion
item responses to the Huntsville Operelions Support Center

(HOSC).

There were 31 tests performed utilizing the OWS Backup and
64 Laboratory tests from SL-1 roll-out through SL-4 mission

completion.

Final Configuration Discussion

Structural System - The OWS structural system (Fir re 2.1.4.1-1)
is a modified S-IVB stage and consists of a forward skirt,
propellant tanks, aft skirt, thrust structure and a main tunnel.
The skirts and main tunnel serve the same function for the OWS
that they did for the S-IVB, i.e., to carry structural loads and
accommodate externally mounted equipment, plumbing/wiring. The
thrust structure has no J2 engine thrust losds to transmit, bdut
otherwise it was used similarly to the S-IVB usage to accommodate
installation of additional equipment and integration hardware

peculiar to the OWS.

Modification of the <- IYB propellant tanks for the OWS were more
extensive. A larger, reusable entry hatch replaced the £-1V8
hatch in the forward dome of the LH2 tank. A side panel wio added
to the LH2 tank for ground access and to provide entry into the
tank for modifications, installations and checkout. Thrne other

2 01-16
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ORBITAL WORKSHOP
TANK ASSEMBLY, SKIRTS AND INTERSTAGE

FORWARD
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LH2 TANK
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FIGURE 2.1.h.1-1
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apertures were iﬁcluded 10 provide an orbital viewing window

and to accommodate two scientific airlc.ks which provided the
capability to deploy experiments external to Skylab.

Internally, the LH2 tank modification consisted first of fully
"papering" the polyurethane tank wall insulation with aluminum
foil to fireproof the habitation area. A pair of grid floors
enclosing the crev quarters were inctalled and rew quarters con-
sisting of a wardroom, waste management and sleep compartments

and a medical experiment compartment were included.

The S~-IVB LOX tank was converted to a waste tank for the disposition
of Skylab trash. The tank was compartmented with screens; one com-
partment used to collect liquid waste which was non-propnlsively
vented overboard. The common bulkhead between the habitation area
and the waste tank wac reworked at the center for the installation of

a trash lock through which trash was passed by the Skylab crews,

Meteoroid Shield System - A shield for the OWS habitation area

protection against meteoroid penetrstion is arfordec (Figure .
2.1.4.2-1). The probability against - sure loss from penetration

is equal to or greater than 0.995. The ..ield is made from aluminum

sheet and is pretensioned against the tank wall for launch and ascent.

It i8 released on orbit by ordnance serverance of tie-down str&ps

and is designed to deploy to a standoff distance from the tank wall of 5 .

in.(12.7 cm). The deployment is accomplished by energy stored in

torsion bar springs installed at the forward and aft skirts. On

deployment, the shield is designed to envelor the habitation area and

through use of thermal coatings provides the passive thermal control
for the Workshop. 2.1-18
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2.1.4.3

Environmental/Thermal Control Subsysiem (E/TCS) -~ The E/TCS

design is based upon passive thermal control of the OWS environment
with augmentation by convective heating and cooling of the atmosphere
during manned phases and radiative heating of the internal structure
during unmanned phases. The E/TCS is thus made up of two basic
subsystems: an active thermal control subsystem including ventilation

and a passive thermal control sabsystem.

The passive thermal control subsystem consists of optical property
control of the OWS interior and exterior surfaces, high performance
insulation (HPI) on the forward dome, polyurethane insulation lining
the inside of the OWS pressure shell and heat pipes attached to
structural penetrations of the interior insulation. The exterior
surface finishes and the HPI blanket control the net energy

balance between the OWS and the external space environment. The

heat transfer rates frorm the habitation area to the metecroid shield,
and from the forward and aft dome areas, are regulated by surface
finish control. Also, the interior habitation area wall temperatures
are made more uaiform with optical property control of these surfaces

and v.th the heat pipes.

The active thermal control subsystem provides continuous control of
the OWS internal environment during periods of astronaut habitation.
The cabin gas temperature is controlled by cabin gas heat exchangers
in the airlock module (AM) and by convective heaters in the three
VCS ducts. Reconstituted air from the AM is mixed with recirculated
air in the OWS. Prior to habitation, radiant heaters maintain
temperatures above the minimum levels that satisfy food and film

storage requirements. Figure 2.1.4.3-1 shows the OWS active system

components. 2.1-20 “
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Thruster Attitude Control System (TACS) - For most of the eight-

month long Skylab mission, the primary source of attitude control

is the three control moment gyros (CMG's) which provide the point-

ing accuracy and stability necessary for many Skylab astronomical

and earth resources experiments, and which maintain the solervr

inertial attitude necessary for the Skylab solar arrays. A

propulsive attitude control system (ACS) is needed to provide

control during CMG spinup (the first ten hours of the mission), to

handle dccking transients and large maneuvers beyond the capability .
of the CMG's, to desaturate the CMG's when necessary, and to provide »
a contingency capability in case ¢f "™MG failure. This system

designated TACS ,thruster attitude control system) provides over

81,000 1b/sec (360,000 N-sec) of impulse. A high thrust level of

50 1b (222 N) is required at tke start of the mission for separation
transients, a 20 1b (90 N) thrust mirimum is required for each of

the three dockings with Apollo command modules, and a 10 1b (45 N)

minimum was specified for the rest of the mission.

The system ir a blow-down system using gaseoucs nitrogen as the

propellant. The plumbing system is fully brazed. Figure 2.1.h%.k-1

shows the location of TACS equipment on OWS. Two modules of three ?
thrusters eich, 180° apart on the OWS aft skirt utilize quad- :

redundant valves for each thruster.

2 . 1-22
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2.1.4.5

Solar Array System (SAS) - The Solar Array System (SAS) for OWS

is made up of two wings, each consisting of a beam fairing and
three wing secticns. Each section contains ten identical active
solar panels for a total of 30 panels per wing or 60 for the
complete system. The system supplies electrical power to the AM
for distribution to equipment requiring power. SAS provides an
average of 10,496 watts between 51 and 125 volts during the sunlit

portion of each orbit.

For launch and ascent of SL-1 the SAS beam fairings housing the
array are stowed snugly against the OWS meteoroid shield/tank
structure. A GN2 ground purge is introduced into the beam fairings
to insure an atmosphere environment arcund the stowed array of 50
percent relative humidity or less. During launch the beam fairings
are vented to preclude over pressurization of the structural

fairings.

After insertion of SL-1 in orbit, an ordnance severence system
releases the SAS beam fairings for deployment. The deployment is
accomplished with a viscouzly damped spring actuator. Subsequently,
the wing sections are released and deployed f.om the beam fairing
by similar systems. The beam fairings and wing sections are
mechanically latched in the deployed positions. Figure 2.1.4,5-1
shows the deployed SAS and related equipment relative to the OWS

tank structure.

2 -l-el&



—— ——

W3LSAS AVHIY ¥VI0S L-5°b°1°¢ Jn=id
MM V 40 DAVYN

gNIYIVS WY38 SNTd S%011I3S INIM (€) ¥
NOILJ3IS INIM V 4P IV STINVE (81) €

1INV V i1 INYN SIINCON () T

JINAON V 4N I%VIN ST130 HVYI0S (919) )

‘S310M
T 9NIM — —— 1 ONIM
l\b J ~}
' 4 £ 3 £ 4 ‘
r~~ A N~ - ale - B s A nlg A L hs ™~
. ———
iz F T A
ﬂl, ‘.l!{
Al NOLLISOd 011333
SONIYIVY TINY,
IN NOLLISOJ o ey
1 ONIM  ONIH WV T 9N

2tl"25

- —————




"oy R

R
¥

G

w5

LTI

2.1.4.6 Electrical Power Distribution System (EPDS) (See Figure

2,1.%,6-1) - The EPDS provides the means for power difstribution

B
ST

from the AM to all OWS loads. Power is distributed e».ernally to

b Thruster Attitude Control System (TACS), Instrumentacion, etc.,

and through OWS feed throughs to redurdani busses routed to an
electrical power and control console. In turn, the power is

routed from the console to systems/equipment and experiments

internal to OWS. The console in conjunction with rewote control

panels contains switches, circuit breakers, and indicators to

permit crew control of power distribution to end items. The EPDS
receives 25.5 to 30 vdc from the AM and supplies 24 to 30 vdc to ihe end

items. Wiring to end items is electrically protected with circuit

A e L e

breakers and physically protected from damage and fire by metallic

trough type "conduits."

o LA F e

2.1.h.7 IlJumination System -~ An illumination system in OWS is provided to
allow for normal and emergency crew activities and experiment ‘
operations. The system consists of general illumination lighting,

initial entry and emergency lighting and auxiliary lighting.

For general i‘lumination, there are 42 floodlights, 18 in the forward

compartment with 8 on the forward dome and 10 on the forward walls,

A P TP IRAR R e £

4 in the wardroom, 3 in the waste management compartment, 3 in the
sleep compartment, and 14 in the experiment area. For redundancy, ;

one-half the lights in each area are on Bus #1 and the remainder on

Bus #2.
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For initial ~rew entry into OWS and emergency, a lighting system

is provided to control 8 of the 1J lig.ats in the forward compart-
ment. These floodlights will illuminate, regardless of the positicn
of their remote or integral light switch. The ini.ial en*ry light-
ing is controiled by a single switch in the aft compartment of the
Airlock Module and the emergency lighting is enabled by the
simultaneous failure of both OWS busses which automatically supplies

euergency power to the initial entry and emergency light system.

Two portable, hi intensity lights, each containing 4 permanently
installed fluorescent lamps, are supplied for special illumination.

Figure 2.1.4.7-1 shows the light arrangement of the OWS illumination

system.

Cocmmunication, Data Acquisition and Command System - The OWS
communications system provides capability for audio communication
between Skylab crewm:n and between the crew and ground control.

It also provides ac:ommodations for video transmission from Skylab
to ground control and the acjuisitvion of bio-medical data on the
crewmen. Ten GFP Speak Intercom Assemblies (SIA's) located through-
out OWS comprise the principal hardware of .hc system. The SIA's
utilize two channels, either of which can ve conn' ‘ted to u crevman's
communication umbilical. Further, they include the capability for
pusl-to-talk, push-to-transmit and voice tape record selection by

a crewman. Each SIA also includes an audio device for caution and
warning tones. Figure 2.1.4.8-) shows the communication sy item

arrungement,

2 01‘28
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2.1.4.9

The OWS Data Acquisition System consists of a portion of the
Saturn Workshop Pulse Code Modulation Telemetry System, on-board
displays and ground checkout support measurements. Low level and
high level multiplexers, signal conditioning equipment and de-
coders are located in the forward skirt of the OWS. Signal con-
ditioning equipment for transducers installed aft on OWS are

mounted in the aft skirt (see Figure 2.1.4.8-2).

The OWS Command System provides automatic command capability for
the first 7.5 hours of the mission. This is for control of tank
pressures, thruster attitude control, solar array, meteoroid shield
and refrigeration system radiator shield deployment, the activation
of the refrigeration system, and certain AM/ATM/MDA functions. The
des.gn utilizes the S~IVB mainline switch selector, which receives
command input logic from the IU. The AM Digital Command System
serves as backup. Figure 2.1.4.8-3 shows the system installation

on OWS.

Caution and Warning System (see Figure 2.1.4.9-1) - The caution and
wvarning system for OWS is an integral part cf the system for Skylab.
The system provides visual displays and audible tones when selected
parameters reach out-of-toleraice conditions. The perameters
selected are those vwhich could result in Jeopardizing the crew,
compromising mission objectives, or, if not responded to in time,
could result in the loss of a system. Tne monitored parameters

are categorized as Caution, Werning or Emer¢ency parameters. The '
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system is monitored in the Airlock Module; the OWS providing ;
selected redundant displays for crew observance while in the

experiment compartment. The OWS caution and warning panel is

primarily a repeater station displaying the condition of selected

cluster parameters. Six emergency, 2 caution and 2 warning

parameters are displayed.

Habitability Support System - The OWS Habitability Support System

consists of the following subsystems.,

A. Waste Management System (WMS) (see Figures 2.1.4.10-1 and
2.1.4.10~2) - The waste management collection module houses the
equipment used to collect feces and urine. Feces is rollected
in a bag using airflow into the bag to simulate gravity. The
uir enters the bag, passes through a hydrophobic filter and
subsequently thrcugh an odor filter and blcwer and exhausted
into the Waste Management Compartment (WMC). Urinez is collected E
in a receiver and hose similar to an aircraft relief tube. A ‘
centrifugal separator separates _he air from thne urine. Air
passes through the same odor control filter and blower as does
the feces collection air and the urine is pumped by the separator
into a four liter storage bag. . n order to obtain samples to
be returned for the medical experiment, the feces is vacuum
iried in a waste processor and a urine sample of 120 ml is
extracted from the storage bag and then placed in a freezer for
storage. A vacuum cleaner is included in the waste management

equipment., The same blower as used in the collection module

2.1"35
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is used for suction. The vacuum cleaner uses a bag similer

in operation to the fecal bag. The trash airlock is used

to dispose of trash from the cabin into the waste tank. Trash
is placed ir a standard disposal bag; placed into the airlock
and after closing the 1lid, the trash is ejected into the waste

tank by a sizzor mechanism.

Water Management System (see Figure 2.1.4.10-3) -~ Water is

stored in ten 600 pound (2721 kilogram) capacity stainless

steel tanks. The tanks contain an integral stainless steel
expulsion bellows, fill and drain ports, iodine and sample

ports, level iudicators and shutoff valves. The water is trans-
ferrad by Teflon lined huses to the wardroom for drinking water
and to the WMC for personal hygiene water. In both compartments,
the water is heated to the desired temperature. There is also

8 chiller in the WMC to supply chilled water for drinking. The
hot water in the werdroom is used for food reconstitution and
dispensers are available for both hot and chilled water. The
wvater in each water storage tank is initially purified by using
iodine as a tlocide., The purity is meintained by periodically
injecting icdire in the water. A portable water tank with a

26 pound (118 k.logram) capacity is provided for c~"tingency
water supply and also te support the water network fill and ?

flush during activation.

R—-3
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Personal Hygiene System (see Figure 2.1.4.10-4) - Personal
hygiene equipment is provided for the maintenance of health
and personal cleanliness. A personal hygiene module is pro-
vided to store supplies required by the crewmen. Dispensers
for utility tissues, wash cloths, towels, and chemically
treated cotton pads are also provided. The capcbility to dry

wash cloths and toweis is available.

Body Cleansing System (see Figure 2.1.4.10-4) - Body cleansing 4
is aceomplished both by the shower and by sponging with wash- 7
cloths. A washclovh squeezer is provided. The shower contains

an enclosure with a continuous airflow as a gravity substitute

for moving water from the crewmen. A water bottle is filled

from the WMC water dispenser and attached to the ceiling at

the shower loxation. The water remaining after the shower is :
vacuumed and passed through =z centrifugal air/liquid separator.

The air is then filtered and pumped through a blower into the

cabin.

Food Management System (see Figure 2.1.4,1n-5) - The food
management subs.stem ¢ -nsisted of equipment and supplies re-
quired for the siorage operation and consumption of fcods. Food
was stored in fond boxes, galley trays, food freezers and a food
chiller. A galley, components of the food table, food trays

are provided for uper.tion and preparation of the meals. Hot
and chilled water are provided to reconstitute the dry food and
chiiled drinks. Fcod cans and beverage packs are grouped in

menu form in food overcans. A heater trey is available to heat

2- l‘)‘o
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the food during preraration of the meal.

Sleep Support System (see Figure 2.1.4.10-6) - Sleep restraints
are provided fcr each crewman. They provided thermal comfort
and boc s restraining capability. The sle=p restraints are

mounte. on frames in the sleep compartment.

Suit Drying System - The suit drying equipment consisting of a
blower, hoses and desiccent bags is provided to remove moisture
from inside the pressure suits after each suited operation.
Pressure suits are dried at three (3) suit drying stations
located in the OWS forward compartment. Drying is accomplished
by installing a suit in the drying station which consists of the
PGA portable foot restraints (attached to the forward compartment
floor) and a hanger strap which suspends the suit between the
floor and the water ring foot restraints. The blower unit
forces drying air through a hose and into the suit. Moisture

is dried by the air and collected by the desiccant bags. The

desiccant bags are subsequently dried in th~ WMC waste processor,

Refrigeration System (see Figure 2.1.4,10-7) - The OWS refri-
geration system is a low temperature thermal control system utiliz-~
ing Coolancl =15 as the refrigerant in a closed loop circuit.

Heat is dissipated through a ground heat exchanger cooled by

G.S.E, during prelaunch operations and by a radiator, excernally
mounted at the aft end of OWS, for orbital operstions. The

system provides food freezers and chillers for food and watex ‘

in support of habitability and urine freezers and chillers

2 ol'h3
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in support of the bio-medical experiment. The syster has
dual coolant loops and redundant components to provide reli-

ability. It controls temperatures through a range of +42°F to
~-20°F (5.6°C to -29°C).

Atmosphere ContrpllSystem - The OWS which is pressurized to
26 psia (179kN/m?)'with N, in both the crew habitation area and
waste tank for launch is vented after orbit insertion; the

wvaste tank to vacuum and the habitation area to 1.35 psia
(9.3kN/m2) partial pressure N,. The habitation area is then re-
pressurized to 5 psia (34.5 kN/ma) with 0, to provide the desired
breathing atmosphere. Section 2.1.4.3, Environmental/Thermal
Control, discussed both the passive and active systems of control
over cabin atmosphere temperatures. The active being provided

by heat exchangers in the Airlock Module and convective heuaters
in the three OWS ventilation ducts. The circulated cabin gas

is reconstituted in the Airlock Module. The ventilation ducts,
each with a circulation far cluster, route reconstituted air

to a plenum chamber aft of the aft floor in OWS for diffusion

through floor diffusers into the cabin.

pd

2.1.4.11 Stowage System - Stowage capability for provisions is included

throughout the OWS (see Figure 2.1.4.11-1), ‘'Cwenty-five standardized
stowage containers in the forward dome and 16 standard stowage
lockers located in the various areas accommodate general provisions

such as clothing, sleeping restraints, urine collection bags, etc.

2.1-k6
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2.1.k.12

For ambient food storage, 11 containers in the forward compart-
ment end 2 galley cabinets are provided. Five food freezers,

3 in the forward compartment and 2 i1 the wardroom are installed.
A refrigerator for perishable food is located in the wardroom and
a urine freezer is included in the waste management compartment.

The total stowage capability of the 210 containers on board is
580 £t3 (16.4 M3).

Experiment Accommodations - For OWS experiments, hardware accommo-
dations necessary to integrate experiment equipment and perform
the experiments are provided. These consist of structural attach-
ments, electrical cabling, pressurization and vacuum plumbing, and
stowage restraints. A pair of scientific airlocks, anti-solar and
solar, are instalied in the cylindrical tank walls of the habitation
area in the forward compa»tment to provide visual and physical
access outside for experiments requiring it. Figure 2.1.4.12-1
shows the vacuum provisions for the waste management system; the
vacuum access is through the waste tank to utilize the non-
propulsive venting system of the waste tank. Figure 2.1.4.12-2
shows the vacuum provisions to accommodate the metabolic activity

and lower body negative pressure experiments.,
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2.1.5

Mission Performance

The launch of SL-l1 occurred on 14 May 1973. Inadequate venting of
pressure in the auxiliary tunnel portion of the meteoroid shield
caused the shield to be torn away from OWS during early ascent. As
the shield was ripped away, the structural tie-downs for Solar Array
System (SAS) beam fairing 2 were severed. The unsecured SAS wing
was separated from OWS by impingement forces from the retiorocket
plumes at payload staging. Further, remnants of the torn shield
remaining in the vicinity of SAS beam fairing 1 prevented the normal
programmed orbital deployment of the array. This array, however,
successfully deployed when the SL-2 crew, through Extra Vehicular

Activity (EVA), broke away the deployment restraints.

The loss of the meteoroid shield caused a reduction in the probability
of no pressure loss from the OWS habitation area from 0.995 during a
minimum period of eight consecutive months to 0.985 during a minimum
period of fifty-six consecutive days. The passive thermal protection

afforded OWS by the shield was lost.

SL-2 launch scheduled for 15 May 1973 was delayed ten days during which
time contingency actions to rectify the anomalous condition of SL-1
were planned and tested. Over this ten day period, the goldizad OWS
exterior waé exposed to direct solar input. Internal temperature and
temperatures of the ambient food and film rose. The internal tempera-
ture rise was rapid for approximately 1-1/2 days after orbit insertion.
The change rate decreased consistent with the orbital attitude of the
spacecralt which was generally Solar Inertial (S.I.)/50° pitch

effected to provide temperature control. During this period, the

2.1-51



D R T at L

ot X s TR

P

i xpam

e e | SRR

P e MU,

5
¢
N N
b
%
fn
N
B
g,
iy
g
13
H
3

floor food containers and OWS internal temperature was approx-
imately 125°F (52°C), ambient food rack containers approximately

130°F (54°C), and the film vault approximately 120°F (L48°C).

Also due to the loss of the meterroid shield, OWS external and
internal surface temperatures approached 300 and 200°F (148°C and
93°C), respectively. . These elevated temperatures caused the internal
insulation to be subject to outgassing of hydrocarbon products.
For this reason, the OWS atmosphere was vented five times prior to
habitation. It was felt that some portion of the insulation had
become debonded; however, inspection by the SL-2 crew determined
the degree to be negligible. The loss of the meteoroid shield
impaired the passive thermal control system; however, after the
deployment of the JSC parasol, the OWS insulation system, i.e.,
aluminized mylar high performance insulation (HPI), external on
the forward dome and the polyurethane foam internally, provided a

habitable structure for the duration of the Skylab missions.

Generally, OWS systems performed in accordance with design expecta-
tions. For SL-1/SL-2 they functioned in the primary mode of

operation; no backup capability was utilized.

The high temperatures encountered early in the SL-1/SL-? mission,
prior to deployment of the JSC parasol, which provided a shade for
the sun side of the OWS Habitation Area, did generate some unique
difficulties which were not really unexpected. The five sensors in

sleep compartment 2 gave three false alarms due to increased

2.1-52
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sensitivity resulting from high temperatures. Water tank 1

iodine content was low after iodine inspection. This was ex-

prcted based on test data. Ventilation duct 1 flow meter failed,
perhaps as a result of high temperatures. These were minor problems

that did not degrade the mission.

Several operational prcolems developed that were solved without
mission degradation by using modified procedures; e.g., disposal of
large quantities of items through the trash airlock, leakage of
havitation atmosphere through the trash airlock due to the operating
handle being in a wrong position and fogging of the wardroom window.
The more significant problems encountered are identified below by

OWS subsystem.

A. Refrigeration - On day of year (DOY) 173, following SL-1/SL-2
deactivation, data indicated simultaneous refrigerant flow
through the radiator and by-pass leg of the system primary loop.
The by-pass valve was cycled by flight controllers which im-
proved the loop performance. Notwithstanding the split-flow
degraded mode of operation, adequate temperature control through-

out the system was provided by the primary loop.

The coldest food freezer temperature dropped below the Contract
End Item (CEI) specification limit of ~20°F (-28°C) on DOY 271
and did so several times during the storage period between SL-3
splashdown and SL-4 launch. This is attributed to cabiu tem-
peratures dipping to the low 60°F's (15°C's). The freezer

specification limit was fr system design, the food being
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capable of withstanding much colder temperature. The food,
in fact, was stored onboard OWS at -40°F (-40°C) at KSC.
Therefore, the freezer low temperatures between -20°F and -25°F

(-28°C and -31°C) had no deleterious effect on the food.

Electrical - Thermal analyses indicated that due to a worst case
beta angle during the SL-1 mission, mounting bases for some
components experienced temperatures as much as 20°F (11.1°C) higher
than design maximum. However, laboratory examination of the
components involved revealed that no problems woula be en-

countered,

Instrumentation and Communications - The low level "B" multi-
plexer commenced intermittent operation on DOY 215, Mission
data was not impacted, however, since we provided alternate
sourcrs for all Gata measurements. Thus, on-board trouble-

shooting of the malfunction by the Skylab crews -as never

recommended.

The SL-1 launch anomaly which caused the loss of SAS beam fair-
ing 2 destroyed 50 percent of the OWS electrical power gener-
ation capability. This in no way jeopardized Skylab power
systems and though some experiment activity was curtailed due

to contingency power management early in SL-2, the total planned
experiment activity for the program was exceeded. Due to design
margin and reasonable conservatism, SAS wing 1 provided 58 percent
of the total SAS power requirements and showed little detectable

degradation in power ocutput throughout the Skylab missions.
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An OWS subsystem, the meteoroid shield, in part intended to
provide passive thermal protection for the OWS failed during

launch.

dowever, another OWS system, Thruster Attitude Contrcl System
(rACS), was used to maneuver the spacecraft to a more favor-
able attituaz for thermal control, thus, substentially

contributed to "salvaging SL-1."

OWS TACS successfully fulfilled all vehicle control demands
imposed on it throughout the SL-1/SL-2 mission. It was the
primary attitude control system for the SL~1 payload following
SII separation until the Control Moment Gyro's (CMG's) were
sufficiently spun up to permit transfer to Apollo Telescope
Mount (ATM)/CMG control. Following transfer to CMG control,
the TACS continued to function as a supplemental system to
correct large attitude error rates and provide momentum relief
to the CMG's. Further, TACS impulse consumption significantly
exceeded the predictions for a nominal miscsior profile. The
excessive usage is attributed to SL-1/SL-2 mission anomalies
delineated as follows:
o "ATM/CMG" switchover occurred 10 hours later than scheduled
due to CMG anomalies.
o Loss of the meteoroid shield imposed several "unplanned"
attitude maneuvers for Skylab thermal conditioning.
0 Excessive CMG "reset ' ings" were performed while rmaintain-

ing unusual vehicle attitude.

2,155
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o Large vehicle perturbations were associated with Stand-up
Extra Vehicular Activity (SEVA) and EVA to deploy SAS
wing 1.

o Several unsuccessful "hard dock ngs" were attempted by the

SL-2 CSM.

The TACS total usuable impulse at liftoff was approximately
80,000 1lb-sec (356,000 N-sec). Impulse consumption to DOY 174
was approximately 45,000 lb-sec (200,000 N-sec), compared to

the maximum predicted usage of about 16,000 lb-sec (71,000 N-sec).
This extensive use o1 TACS impulse presented no concern for the
completion of the Skylab missions since, after arresting tue
anomolous condition of SL-1/SL-2, the impulse usage was nominal.
No detectable system leakage was observed from a series of
periodic mass calculations throughout the completion of the

mission profile.

SL-3 was launched 28 July 1973. After CSM docking, Skylab vas
activated; the activation of OWS was normal. The MSFC twin-pole
sunshade was EVA deployed by the crew on DOY 219 as a backup

for the JSC parasol, thus re-establishing the desired thermal
control of OWS. OWS systems continued to perform in the primary
mode. SL-3 spiashdown occurred on 3eptember 25, 1973, completing

the 59 day mission.
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SL-U4 launch occurred 16 November 1973. The mission stay
time was increased from the planned 56 day mission to 8k
days. The CSM was docked to the Orbiting Assembly on the
third docking attempt and SWS was activated. OWS activation
was normal. All OWS systems performed as required for Si-i
plus‘geeting the increassed demands of the longer mission
notebly well at the end of the mission. SL-4 splashdown

was on 8 February 1974 completing the Skylab program

missions.
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2.2.1.1

SYSTEMS

Structural System

Forward and Aft Skirt Structure

The OWS forward and aft skirts were SIVB/Saturn V 515 Vehicle struc-

tural Assemblies modified to meet Skylab requirements.

A. Design Requirements

1/

2/

3/

L/

5/

6/

Withstand vehicle body bending, shear, and axial loads and
transfer these loads between adjacent shell structures with
no yielding that would impair function at design yield 1ocad
and no failure or instability of structure at design ultimate
load.

On new hardware or modified existing hardware when it could
be expecient to preclude testirng use an ultimate factor of
safety of 3.00 and a yield factor of 2.00. Where capability
could be verified by test or extensive analysis use an ultimate
factor of safety of 1.40 for manned condition and an ultimate
factor of safety of 1.25 for unmanned,

Provide structural support for mounting electrical/electronic
and other functional equipment to withstand prelaunch,
launch, boost and orbital environments.

Provide structural attachment and support structure for SAS
wing assemblies capable of transferring loasd from SAS to
skirt Juring liftoff, boust and orbit operations.

Provids thermal shield to prevent excessive heat itransfer
between habitation area and skirts.

Provice aerodynamic shaped external tunnels to accommodate
cable: and tubing from and between forward and aft skirts.
Provi¢e umbilical instaellation structural support for ground

to velicle connections required during prelaunch operations.

2-2:1-1
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T/ Provide support for TACS nozzles and control valves on the
aft skirt.
8/ Provide ;eparation Joint FPor inflight separation of the SII
stage from OWS at aft skirt-to-aft interstuze interface.

System Description - The forward skirt, as defined by Drawing 1877164
(Figure 2.2.1.1-1), was a modified SIVB/V cylindri-al shell 260 in.
(660.4 cm) in diemeter and 122 in. (309.9 cm) long. The basic cylinder
was a semimonoccgue tluminum alloy structure of sheet-metal skin,
external longitudinal stringers, and internal ring frames. The
forward interface flange of the cylinder provided for a bolt,
field-joint type connection to the IU in compliance with 13M50202
physical ICD, 13MOT7002 IU functional ICD, and 13M03002 procedural -ICD,
The skin of the forward skirt was 0.032 in. (.812 mm) thick, 7075-T6
clad sheet. The external longitudinal stringers were made from
TOT5-T6 hat-section extrusions. The frame at the aft end of the
cylinder was a formed TOTS5-T6 angle extrusion. It had an outward
flange which provided for the bolted connection to the mating

flange of the tank cylinder. The frame at the forward end was
built up of formed TO75-T6 sheet metal and ertruded parts. Two of
the three intermediate frames were constructed of formed T075-T6
sheet, while the aft intermediate frame was formed from a lérge
T7075-T6 hat-section extrusion.
Inflight venting of the volume enclosed in the forward skirt. FAS,
and the pesyload shroud was accomplished by four pairs of existing
SIVB/V elongated holes spaced approximately 90° apart around the
circumference of the forward skirt. Each pair of holes in adjacent

gtringer bays hed an actual area of 37.5 in2 (241.95 cm@) such that
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the total vent area was 150 in2 (967.8 cm?). Also, each pair of
openings had internally mounted rain shields to restrict water
from entering the interior of the forward skirt.

t. forward skirt umbilical structure was identical to the S-IVB/V
configuration, except for the closing of two unused holes in the
umbilical panel. The installation consisted@ of a sheet metal
panel which replaced the skin in a structurally-reinforced area at
the forward end of the skirt, just aft of the IU interface. It
occupied the wid*h of two stringer bays and was approximately 28 in.
(712 em) in length. The 1AT72TL49 umbilical panel was fabricated from
0,100 in. (.254 em) thick T075-T6 aluminum sheet. The panel was formed
flat in the central area where the holes for the conmectors are
located. It was riveted to the skirt basic structure, replacing
an equivalent portion of the skin and the end of one stringer.

The rigidity of the installed panel was increased by internal hori-
zontal stiffeners riveted to the panel. The skirt structure sur-
rounding the umbilical installation was strengthencd by additional
internél ribs and intercostals.

Electrical/electronic equipment was mounted identical to SIVB/V

on panels which in turn were attached through vibration isolators

to internal structural support skirt intercostals. The panels were ? :
of the same honeycomb design as used on the S-IVB/IB/V stages. ‘
Leminate fiberglass epoxy face sheets, 0.032 in. (.812 mm) thick, were

bonded to a 1.125 in., (2.86 cm) thick, glass fsbric reinforced phenolic %
honeycomb core. Glass fabric, 0,063 in. (1.60 mm) thick, volan-finish, é

"C" channels were attached at the forward and aft ends of the

20251-1‘ ‘



panel. Delron inserts were installed in the panel for mounting the
electrical components.

These panels were mounted on two or three isolators, depending on
the size of the panel, and weight of the electrical components.
The isolators, in turn, mounted to the forward skirt structure.
The isolators of the same design as used on S-IVB/IB/V stages X
consisted of an elastometer molded 'in between two aluminum
extrusions with mounting studs (Figure 2.2.1.1-2).

. Some of these panels were thermelly insulated on the inboard side
and some on the outboard side with a low-emissivity shroud. These
shrouds consisted of two to four layers of goldized Kapton (met.-
alized polyimide film) with a polyester net fabric between each
layer of goldized Kapton. The shrouds were assembled to the panel
by velcro or tie strings (Figure 2.2.1.1-3).

The'SAS attechment fittings were 1ncorporéted irto tne 1BTT164-1
forward skirt as integral parts of the structure and cannot other-
wise be identified by a single drawing number. Design changes to
the forward skirt ircluded the addition of sheet metal channels to
strengthen the frames at Stations 3151.6 and 3193.6, machined
interéostals between the two frames, and sheet metal ribs, all of
which served’as internal backup structure at the SAS forward
fairing attach points. Externally mounted fittings were installed
at these same locations to receive the concentrated loads and
transfer them to the backup structure. Further aft on the forward
skirt, just forward of the tank joint, externallymounted fittings
were located. The ordnance tie-down/release assemblies were

attached to these fittings. A major design change to the basic

20201-5
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structure of the forward skirt was the replacement of the sheet

metal skin with a chemically milled panel at each of the two SAS
locations. The thickness of the chemically milled panel ranged

from 0.032 to 0.122 in. (.812 to 2.84 mm), providing increased strength
a1d stiffness in the areas subjected to SAS loads.

The thermal shield installation, Drawing 1BT79502, was added to the
structure which extended forward from the tank Joint to the first
intermediate forward skirt frame, a length of about 31 in. (78.Tk cm).
It consisted of panels which formed a continuous band around the
circumference of the forward skirt, except where interrupted by

the SAS wing assemblies. The shield was made up of beaded aluminum
sheet-metal panels which were attached to fiberglass hat Lection
supports mounted circumferentially on the forward skirt structure

at L stations 6.78 in. (17.22 cm) apart. The hat-section supports were
riveted to the outer face of the forward skirt stringers, and the
beaded sﬁield panels were riveted to the outer face of the fiter-

glass supports. The shield was thus located redially about 1.5

in. (3.81 cm) outward of the forward skirt skin.

The area immediately forward of the tank joint for a length of
spproximately 7.0 in. (17.78 cm) was not covered by the aluminum panels.
To provide removable panels for access, and also to minimize the

amount of heat transferred to the shield by conduction and radia-
tion from the tank joint flanges, fiberglass panels were used for
the thermal shield in this area. At the forward end of the beaded
aluminum portion of the shleld, sloping pawels of fiberglass were

instalied between each pair of stringers to provide a ramp-like

202.1-8
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transition between the forward skirt skin and the surface of the
thermal shield.

The OWS aft skirt, a modified S-IVB/V aft <girt (Figure 2.2,1.1-L), was
a cylindrical structure, 260 in, (660.4 cm) in diameter and 85.5 in.
(217.17 cm) long. The typical skin was 04O in. (1.016 mm) thick,
7075-T6 clad sheet. A typical stringer was a 1.375 in. (3.493 cm)
high, 7075-T6 aluminum extrusion hat section. The stringers were
machined to reduce weight in the intermediate bays where the full
section was not required for strengtth.

The ring frames in the aft skirt consisted of two I section frames
made from TOT5-T6 aluminum extrusion tees, with TOT5-T6 clad !
sheet web, and one T075-T6 aluminum hat section extrusion frame.

(See Figure 2.2.1,1-5).
The forward interface angle was machined from a TOT5-T6 aluminum

extrusion and bolted to the habitation area tank attach angle. The f
aft interface angle was & machined angle which was part of the

separation joint.

The aft skirt umbilical was identical to the S-IVB/V aft umbilical

except for minor changes to accommodate revised connectors for the i
OWS system.

Two connector locations had been modified for the OWS refrigeration
lines. Connector locations not used were plugged. These included
the holes for the LOX fill and drain system, LH2 £i1l and drain
system, end four fluid connectors. Two pivot points on the aft
interstage and three umbilical carrier support fittings supported
the umbilical carrier and transferred the carrier loads to the

OWS structure. :

2-201"9
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The umbilizal plate (1A72896~501) was machined from a 3 in. (7.62 cm)
x 39 in. (99.06 em) x 48 in. (121.92 cm) T075-T65". aluminum plate
with pockets ~or the connectors and ribs for stiffness to carry the
loads from the umbilical carrier and to help transfer the a ‘al load
from the habitation area section to the aft interstage. The umbilical
installation replaced ten typical stringers with five H-section
strinsers with a heavier section and four short het sections and
Hwsection stringers. The short stringers reduced hard-point load-

ing on the tank flange and transferred the load from the forward
interface into the umbilical plate and full len. . H-section

stringers. (See Figure 2.2.1.1-6.)

The aft skirt thermal shiedl was installea 1.75 in. (k.L45 cm)
radially from the skirt skin on the exterior of the skirt. It

extended 33 in., (83.82 cm) aft from the aft skirt-to-tank interface.

The thermal shield was made up of beaded T0T75-T6 clad sheets 0.020 in.
(.508 mm) thick and 0.060 in. (1.524 mm) thick fiberglass panels. The
shield was supported by four 0,060 in. (1.524 mm) thick fiberglass

hat sections, and a 0.060 in. (1.524 mm) thick fiberglass angle
attached to the forward ;aterface angle of the aft skirt (see Figure
2.2.1.1-7). The fiberglass panels extended 0.382 in. (.970 cm) forward

of the aft skirt-to-tank interface to provide the required shadow for

the interface flanges.

The aft skirt thermal shield was sealed except for drain Loles to

prevent damage and contamination of the gold foil liner on the inner

surilace of *tve shield.

2.2.1-12
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The deccription cf the equipment mounting panels and support

structure for the aft skirt was identiecal to that of the forward

skirt except for the TACS valves and nozzles.

The TACS valves and nozzles were mounted on fiberglass honeycomb panels
approximately 1.25 x 17.5 x 18.0 in. (3.175 x 44,45 x 45.75 cm). These
panels were of the same design as the electrical equipment panels. The
panels weve mounted on Aeroflex cable-type isclators (six per panel)
wvhich consisted of aluminum cable retainer bars and stainless

steel cable. The tangential thruster nozzles were supported by

steel fittings mounted to the panel, and the radial thruster nozzle

is supported by aluminum fittings mountéd to the panel (Figures
2.2.1.1-8 and 2.2.1.1-9).

Each protrusion through the skirt skin is sealed with a coated
nylon-cloth heat-sealable boot (1BU4621, 1BB8396). The boot is
clamped around each tube and support fitting with an S0985-07D

CRES band clamp.

The aft skirt SAS attach fittings were insta'led on the S-IVB/V

aft skirt as o part of the conversion to OWS configuration. Three
machined fittings were used to attach each SAS beam fairing to the

aft skirt. Ore fitting replaced a stringer and cerried the axial
stringer loads as well == the SAS loads from two attach points.

Two separate fittings were used at the other two SAS attach points.
These fittings were installed between existing stringers and pick

up existing attach locations on the stringer. No internmal modifi-
catiocns were required to support the SAS attach fittingg.

The OWS separation joint was identical to the S-IVB/V separation

joint (1A83216-503). The joint consisted of two TOT5-T6 aluminum

20201-15
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extrusion angle machined to form an interlocking jeint. The upper
angle had & groove in its horizontal leg, 0.176 in. (.447 cm) deep
x 0.957 in. (2.43 cm) wide. The lower angle had a mating protru-
sion which fitted into the groove to transfer shear loads from the
skirt to the interstage. The vertical leg of the lower angle was
machined to form a 0.050 in. (1.27 mm) thick band which is severed
at separation. A groove was machined in the vertical leg of the
upper angle to form a cavity between the lower and upper angles to
contain the redundant mild detonating fuses which provided the

energy required t- sever the joint. (See Figure 2.2.1.1-10.)

Two aerodynamically shap-. external tunnels extendcd from the for-
ward skirt over tne cylindrical habitation tank to the aft skirt.
One of these, the auxiliary turnel, was an integral part of the
meteoroid shield and it will be described in that section of this
repert. The other, the main tunnel was identical to the SIVB/V
tunnel being approximately 5 in. (12.7 cm) high and 24 in. (60.96
cm) wide and made up of several similar sections for the extended
length, The sections were stiffened at joints by channel section
frames where they were attached t.arough slotted holes. The sec-
tions were further stiffened by intermediate "J" section frames.
Those covers in the skirt areas were bolted to skirt structure and
the covers in the tank section were bolted to clips which mechani-
cally attiched to star-shaped doublers bonded to the tank surface.
The tun.el was sealed and vented identically to SIVB/V. The

tunnel irstallation was flight proven on previous Saturn flights.

202 01‘18
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Testing - The basic structures of the OWS forwurd and aft skirts
were tested as SIVB/V structures for critical design load condi-
tions. The structural capability of the modifications made to the
skirts for accommodation of OWS changes and additions was verified
by analysis and related testing. A high confidence level in the
analysis of the untested modifications for OWS skirts was attained
as a result of SIVB/V test data (Reference MDAC Technical
Memoranda A3-860-KBBC-TM-96 for the forward skirt and A3-860-KBBC-
TM-101 for the aft skirt).

Another test performed on OWS skirt structures was a development
test on the thermal shield to verify its ability to withstand the
acoustical environment of launch. Test results showed no damage
from the most critical acoustic loading. (Ref. MDAC Document

No. TM-137). Some tests on other hardware provided test dats
relative to the OWS skirts, such as the SAS attach fittings which
were vibration tested on the qualification test of the SAS wing
assembly. Similarly on the SAS forward fairing test, data was
obtained for fairing attachment to the forward skirt.
Qualification tests were conducted on each panel/isolator configu-
ration for SIVB/V stages including dynamic loading such as sine

sweep, random vibration and shock as well as static failure tests

- with satisfactory results. Production acceptance and lot verifi-

cation testing was also conducted on isolators received from the

vendor. The panels were qualified by similarity.
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Mission Results - The forward and aft skirts performed satisfactorily
throughout the flight and the mission. Structural performance
showed no aree of concern as loads experienced during boost were
the same level of less than the skirts had experineced on AS-512
and AS-511. The anomaly that occurred at approximately 63 seconds
resulting in structural failure and release ¢f OWS meteoroid
shield introduced higher than design loads into SAS Wing No. 2 tie
down fittings causing premature fracture and partial deployment.
At approximately 593 seconds SAS Wing No. 2 was torn from its
hinges as a result if impingement forces of the S-II retroplume.
Pitcures taken during post SL-2 flyaround showed little structural
damage to the skirts from these failures. Any noticeable damage
to the skirts did not affect structural shell performance during

the ascent phase.

Conclusions and Recommendations - The modified S-IVB/V forward and
aft skirts for OWS were proven structures from the Saturn Program
and vere readily adaptable to Skylab vehicle application. The
anomalies and unscheduled EVA's performed on SL-2 mission did
reveal that the skirt structures did not inherently provide adequate
built-in restraints for the astronauts. Feal time methods and
restraints were devised to accomplish EVA tasks., On new prcgrams,
space vehicle design should consider the requirement of provisions
for external EVA restraints. The restraints could be built-in or

adaptive but should not compromise the primary mission requirements.

The option of using conventional factors of safety accompanied by
normal analyses and testing versus the use of more conservative
factors of safety without testing or where otherwise cost effect-

ive is recommended as good practice if weight 1s not critical.
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Development History - The forward and aft skirts, being

existing SIVB structures required little development for OWS
since their function was almost identical to Saturn vehicles.
Modifications to accommodate new systems, thermal insulation,
and SIVB deletions were the onl; development changes required

for OWS.
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2.2.1.2 Workshop/Waste Tank Structure

A,

Design Requirements

1/

Basic Habitation Area Structure - The basic functional
requirements of the habitation area structure were as
follows:

a, A habitable environment with crew quarters, provisions,

and consumables,

b. A capability for experiment installation and storage
prior to launch,

c., Disposal of waste materials.
d. Installation of scientific airlocks.
e, Capability to withstand induced and natural environments,

The structure for the habitation area was originally a Saturn
S-IVB tank. The liquid hydrogen tank was to be modifield to
become the habitation area tank, and the liquid oxygen tank
was to be modified to become the waste tank, All tank pene-
tration or openings not used were to be sealed. The forward
dome opening was to be modified to contain a forward entry
hatch and to interface with the airlock module, The cylind-
rical portion of the habitation tank was to be reworked to
provide a side access panel for ground access, two scientific
airlocks, and a wardroom window., Openings in the common
bulkhead were to be made for trash alrlock and liquid dump
probes,

The interior of the habitation tank was to be divided into
compartments by floors and walls to provide crew quarters.
The interior structure was required to have the capability of
supporting equipment for loads specified in DAC 56612B and
DAC 56620C.

The habitation area structure was to be designed to with-
stand all external and internal loads which occur during
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ground and water transportatiun, handling, prelaunch, launch,
and on-orbit conditions specification, as specified in docu-~
ments DAC 56612B and DAC 56620C. General design requirements
were specified in Contract Fnd Item CP2080J1C. The cylindrical
portion of the habitation area tank was to be cspable of trans-~

ferring loads between the forward and aft skirts.

Total allowable leakage (including the entry hatch adapter

ring-to~ring seal) was to be less than 5 1lbs (2.27Tkg) mass per
day when the OWS was pressurized to the on-orbit pressure :
environment of 5.0 psia (.345 x 105 N/m2) nominal. Flammabil- o

ity and offgassing requirements were defined in 1BT79102.

. wa

Since the habitation ares tan¥ was originally built for the
S5~1VB Program, one of the design goals in modifying the tankage
for the OWS Program was that eny reduction in pressure capa-
bility would be minimized. Consequently, the original burst
pressure capsbilities of 62.0 psid (4.27 x 102 N/m2) for
cylindrical shell, 55.8 psid (3.84 x 105 N/m@) for the forward
dome and +41.0 psid (2.83 x 105 N/m?) and -26.3 psid (1.81 x
10° N/m2) for the common bulkhead (posicive differential pres-
sure indicates waste tank pressure is greater than habitation
ares pressure) were considered when incorporating provisions
for the access panel, viewing window, scientific airlocks

(SAL's), and other penetrations through the tank walls.

The hebitation tank was to be capable of sustaining local load-

ing in various areas induced by equipment and structure

supported by the cylinder wall. Included were loads at the

two peripheral floor supports and one peripheral water storage : ;

support caused by boost accelerations. : i

Numerous components were to be either bolted to the tank §~*%~

wall or mounted to the wall by disc attachment with nut . f

bt s e« Tty st
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plates bonded to the tank wall insulation. The tank wall
was to be capable of sustaining local loading from vibration
of the components and from external acoustic sound pressure
levels impinging on the tank wall,

The common bulkhead was to be capable of sustaining normal
operating limit differential pressures ranging from -10.0
psid (~.689 x 105 N/m2) (waste tank pressure is less than
habitation area tank pressure) to +17.0 psid (1.17 x 105
N/m2) (waste tank pressure is greater than habitation ares
tank pressure). In addition, a malfunction condition was
defined by the common bulkhead as a case where the waste
tank or habitation area tank vent valve failed open at
liftoff. Under these circumstances, the maximum limit
differential pressures werc -20.5 psid (1.L413 x 105 N/m2)
and +26,0 psid (1.79 x 102 T/m2), Several penetrations
were to be made and equipment was to be mounted to the
common bulkhead. The bulkhead was to be capable of sus-
taining loads from this equipment.

For launch conditions, ultimate and yield factors of safety
of 1,25 and 1.10, respectively, were required for all flight
loeds except random vibration, or on internal pressure when
it relieves buckling load. An ultimate factor of safety

of 1,40 was used for vibration loads. The relieving effect
of pressure was included by subtracting axial tension due
to minimum limit differential pressure for the limit com-
pression shell load times 1.25,

For a malfunction condition (an unplanned event not causing
mission abort), the ultimate and yield factors of safety
were both 1,00,

For loadings during the manned phase of the mission, ultimate
and yleld factors of safety of 1,40 and 1.10, respectively,
were required, Basic design criteria for all conditions
were contained in DAC 566128,
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Crew Accommodations - Major portions of the OWS inte:.or

were to be designed to accommodate crew reguirements per '
Contract End Item Specification CP2080J1C. Curtains or doors -
were to be provided for the ward: >m openi:,, waste manage- :
ment compartment opening and easch sleep compartment opening
to give the ~rewmen privacy. Astronaut aids were requi.ec
throughout the OWS to aid the crewmen in moving to and from
work stations and for providing rest.aint when accompl.sh-
ing on-orbit tasks, Some of the astronaut aids were portable
to permit restraint of the crewman or his equipment at a
convenient location, The astronaut aids and restraints re-
quired and their locations were as follows:

&, Forward access hatch handrails

b. Forward dome handrails

c. Center handrail

d. Experiment area circumferential handrail

e, Forward compartment vertical handrails

f, Waste management compartment ceiling handirail

g. IExperiment aree handholds

h, Sleep compartment handh~1d

i. Waste management compartment handhoid

Jj. Portabie handholds

k. ©Portable tether attach brackets

1. Portable foot restraints
1, Constant wear portable foot restraints
2. Pressure sult portable foot restraints

m. Adjustable length tethers (2)

The OWS open grid floors were to be designed for mating with
the triangular shoes and providing a foot restraint., A L2 in.
{106.68 cm) opening in the ceunter of the ceiling was required to
permit free passage of an unsuited crewman. Emergency egress
openings were required in the ceiling over the wardroom

and aleep compertment,

Closeouts (Barriers) were to be provided for the permanent
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lockers in the wardroom and sleep compartment to allow the
iequired airflow and +o prevent passage of food and loose
particles greater than 0.2 in. (.508 cm) (maximum) in diamecter.
Closeouts in the experiment and forward compartment areas

were required to prevent passage of particles greater theu

0.k ir. (1.106 cm) (maximum). The waste management compartment
was tc be sealed to prevent particulate migration to adjacent

compartments,

The color scheme for the interior of the OWS was specified

in Contract End Item Specification CP2080J1C., The crew
quarters walls, floor and ceiling were to be colored es shown
in Figure 2.2,1.2-1. The forwardi tank wall color listed in
Teble 2.2.1.2-1 was to be extended throughcut the cylindrical
and forward dome sections forward of the aft face of the

aft {loor,

There are numerous other designs required to provide crew
accommodations., In this report, these other designs will be
discussed as a part of the system in which they function.

Basic Habitation Area Tank - The habitation area tank
(1A39303) consisted of a forward dome (1B64442), tank cylin-
der (1A39306), and an aft dome ascembly (1B39309). The for-

ward and att domes are 260 in. (660.4 cm) diameter hemispheres of

2014-T651 aluminum, The cylinder was 260 in. (660.4 cm) in dia-
meter by 268.6 in. (682.24 cm) long and machined from 2014-T651
alumirum with integral machined ribs to form L5 degree "waffle"
pattern for stiffening. The common bulkhead was a 260 in.
(660.4 cm) diameter partial hemisphere with a forward and aft
face of 210L-T651 aluminum, separated by 1.75 in. (L4.445 cm) of
3/16 in. (.475 cm) hexcell fiberglass honeycomb borded to each
face, 1. was attached to the aft dome and separated the habii-

atation area from the waste tank, (See Figure 2.,2.1.2-2,)
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RED-TAN
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STANDARD STORAGE LOCKERS

Figure 2.2.1,2.1 DRBITAL WORKSHOP INTERNAL COLOR REQUIREMENTS
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TABLE 2,2.1.7-1
ORBITAL WORKSHOP INTERNAL COLOK REQUIREMENTS

Item Color

Anemostats Yellow

WMC Lockers, Surfaces Visible "ight Blue
from within the Wardroom

Fecal/Urine Collector Unit Clear

Waste Processor Clear

Wardroom Soft Door Natural

Wardroom Lockers, Surfaces
Visible from within the
Wardroom

Wardroom Table

Wardroom Table Restraints

Mobility Aids

Electrical Panels, Mounting
Structures

Electrical Panel, Faces

Light Housing Assemblies
(except for Reflector
surfaces)

Sleep Compartment Lockers,
Surfaces visible from within
the sleep compartment

Sleep Restraints

Sleep Compartment
Privacy Curtains

Sleep Compartment
Privacy Partition

Gold, Red-tan, Off White (Micatex
with Kel-F 800 topcoat) or
Lamanar X500

Off White (TFE) and Clear

Natural

Dark Blue

Dark Brown

Off White (Micatex with Kel-F 800

topcoat) or Lamanar X500

Clear

Gold

Natural

Natural

Gold
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The hebitation a—ea walls (forward dome, cylinder, and the

aft dome) were insulated with 3D polyurethane foam tile per
1439314, The forward face of the common bulkhead was in-
sulated with 1D polyurethane foam per 1B82223, 1D polyure-
thane foam was installed over the 3D foam on the aft dome

and the lower 20 in. (50.8 am) of the cylirder. To satisfy the
flanmabilicy requirements of 1B78110, a flame retardent coating
of 0,003 in. (.076 ma) al'minum foil was borded over the insula-
tion in the forward dome and cylinder per 1B&.577, The aft

dome and common bulkhead insulation was covered with 0.005 in.
(.127 mm) aluminum foil. The foil on the forwerd dome and<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>